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Abstract--- A stochastic model based on the Boltzmann kinetic equation and employing the comprehensive 
treatment of the dynamics of binary droplet collisions is suggested to describe the droplet size and spatial 
distribution in dense spray. The model is valid for highly non-equilibrium impinging sprays in which the 
inertia of the droplets is very high and dynamic coupling with the gas is low. A Monte Carlo simulation 
procedure is developed for the solution of the kinetic equation. A model is used to analyse the absorption 
of a gas in a liquid spray in an impinging streams absorber. It is demonstrated that droplet collisions result 
mainly in coalescence, and reduce the overall droplet concentration and the interphase area in the reactor. 
The results of the analysis of the vaporization of a pentane spray in an impinging streams combustor are 
presented. It is shown that while droplet collisions reduce the vaporization rate by deflecting droplets out 
of the reactor and by coalescence, collision-induced fragmentation strongly affects the droplet size 
distribution and increases the fuel vaporization rate. The obtained results indicate that in the high velocity 
combustion of light fuels the collision-induced fragmentation of fuel droplets has a profound effect on 
the droplet size and spatial distribution. 

Key Words: impinging jets, spray combustion, binary droplet collisions, coalescence and fragmentation, 
Boltzmann equation, Monte Carlo method 

I. I N T R O D U C T I O N  

Spray systems are commonly used in processes involving gas-liquid operations. The rate of 
convective transfer processes such as absorption, desorption and vaporization, is an increasing 
function of the relative velocity between the phases. In sprays, however, the relative velocity 
between the carrying gas and the liquid droplets is usually small. In order to compensate for the 
low transfer rates, longer droplet residence times are required, necessitating longer batch durations 
or the use of larger size equipment. 

Impinging streams reactors, first proposed by Elperin (1961), have been suggested as a 
method for enhancing mass and heat transfer processes in flowing gas-liquid or gas-solid 
suspensions. In such reactors, two droplet-laden gaseous jets flowing in opposite directions are 
allowed to impinge (see figure 1). At the zone of impingement, droplets penetrate into the opposite 
stream due to their inertia and decelerate until stagnation due to the gas drag force. Afterwards, 
the droplets accelerate and penetrate into the original stream, and so forth. Thus, droplets perform 
damped oscillations, and the pressure gradient in the gas acts as a restoring force. These droplet 
oscillations between the streams result in increased droplet residence times. The relative velocity 
between the droplets and the gas phase in the zone of impingement is significantly increased, which 
results in an enhancement of convective heat and mass transfer rates between the phases. The above 
advantages of impinging streams reactors have motivated their employment for various gas-liquid 
operations, such as the absorption of gases into a dispersed liquid and the combustion of liquid 
fuels, and the results obtained have indicated a significant increase in interphase transfer rates with 
respect to reactors of other types (see Elperin 1972; Tamir & Kitron 1987; Herskowits et al. 1988). 
Experimental investigations of fuel combustion in such reactors performed by Elperin (1972) have 
demonstrated the practically complete combustion of high sulphur-content oil with low levels of 
sulphur dioxide and soot in combustion products. 

Particle collisions apparently decrease particle residence times in the reactor, thereby 
impairing the reactor performance for solid particle suspensions, as was reported by Elperin (1972), 
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but possibly enhance mass transfer through droplet breakup, as was observed by Elperin (1972) 
and Herskowits et al. (1988). 

Collisions between droplets are caused by differences in droplet velocities. The differences in 
velocities arise particularly from the interaction of droplets from opposite streams, but may also 
arise due to differences in response to a flow field by droplets of different size or mass, flow field 
shear and turbulence, wakes and flow instabilities. When the droplet number density is sufficiently 
high and/or when there are intrinsic random effects in the flow field of the carrying gas (i.e. 
turbulence), these collisions can be accounted for with the aid of methods developed in 
non-equilibrium statistical mechanics. 

The evolution of droplet size distribution in spatially homogeneous droplet clouds involving 
coalescence has been studied extensively [see the review in Pzuppacher & Klett (1978) and Pearson 
et al. (1984)]. Kinetic equations were derived describing the change with time of the droplet size 
probability density function. The expression for droplet collision rates in these kinetic equations 
incorporates a collection kernel, which is calculated from the expected droplet relative velocity and 
the impaction efficiency in collision. Collection kernels have been suggested for Brownian and 
turbulent coagulation, gravitational sedimentation, thermophoresis and diffusiophoresis. Giilespie 
(1975) rigorously derived a Monte Carlo procedure for modelling the stochastic coalescence 
process, employing such collection kernels. Numerous numerical simulations have been performed, 
yielding results in agreement with experimental observations (e.g. Pzuppacher & Klett 1978; 
Pearson et al. 1984). The kinetic equations and numerical methods for the calculation of droplet 
size distribution in homogeneous clouds, taking into account the droplet breakup and rebound in 
collisions, as well as coagulation, were also developed [e.g. Gillespie & List (1979) and the review 
in Pzuppacher & Klett (1978, Chap. 5)]. Brown (1985) proposed finite-difference schemes for 
solving a coalescence-breakup equation for rain drops in the atmosphere, where the drops were 
assigned terminal falling velocities. 

Inhomogeneous gas<lroplet flows have received considerable attention (e.g. Faeth 1983). 
Mostafa & Elghobashi (1985) and Mostafa & Mongia (1987) have recently solved a system of 
coupled conservation equations governing the flow in a turbulent jet laden with vaporizing droplets. 
They employed a Lagrangian approach to describe droplet motion in a turbulent velocity field and 
used expressions for droplet turbulent diffusivity in the gas. The equations were solved by a 
finite-difference technique. In these studies, the suspension was assumed to be sufficiently dilute for 
droplet collisions to be neglected. 

However, only a few studies have considered inhomogeneous flows of droplets undergoing 
collisions. Tambour (1985a) and Greenberg et al. (1986) analysed the droplet size distribution in 
an evaporating spray with droplet coalescence by the sectional representation method [see also 
Gelfand et al. (1980)]. In this method the droplet size domain is divided into sections and in each 
section the evolution of only one integral quantity is considered (e.g. number, surface area or 
volume of droplets in the section). This method correctly predicts the droplet size and spatial 
distributions in a turbulent fuel spray with vaporization and combustion. O'Rourke (1981) has 
thoroughly analysed the vaporization of fuel droplets in a turbulent jet, taking into account 
collisions between droplets, particularly droplet coagulation. The relevant mass, momentum and 
energy conservation equations were solved numerically. This method treats droplet collisions 
through a Monte Carlo procedure similar to that applied in the present work, but the collision 
dynamics model involves many approximations. 

The aim of this research is to develop a stochastic model and to provide a Monte Carlo 
method for modelling the flow of interacting liquid droplets suspended in a rapidly flowing gas 
stream, and to apply this method to evaluate flow parameters in an impinging streams reactor. The 
model suggested in this work will focus on the effects of droplet collisions, treating thoroughly the 
sampling of colliding droplets and the collision dynamics. 

2. STOCHASTIC MODEL FOR DROPLET COLLISIONS IN SPRAYS 

An analogy between droplet collisions in suspensions and molecular collisions, described in the 
kinetic theory of gases, enables the application of the Boltzmann equation for droplets, as first 
suggested by Pai (1974). 
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Consider the flow of a gas carrying droplets under the following assumptions. For sufficiently 
small and dense droplets, the droplets may be assumed to be spherical during their collisionless 
motion. The suspension is considered to be dilute and the collision durations sufficiently short. 
Then the droplet motion can be described as collisionless motion due to forces exerted by the gas, 
interrupted by droplet collisions. Therefore the developed model cannot take into account the 
deviation of the trajectories of  colliding particles due to hydrodynamical interaction, causing a 
reduction in collision rate (e.g. Langmuir & Blodget 1948). Only binary collisions between droplets 
with uncorrelated pre-collision velocities are considered. These assumptions are similar to those 
made in the derivation for the Boltzmann kinetic equation in gas dynamics [see, for example, 
Lifshitz & Pitaevskii (1981, pp. 67-72)]. 

The interactions observed for colliding water droplets by Ashgriz & Givi (1987) may involve: 
(1) a bouncing collision; (2) a grazing collision, in which the droplets just touch each other slightly 
without coalescence; (3) a permanent coalescence; (4) temporary coalescence followed by a 
separation in which satellite droplets are generated; (5) a shattering collision, occurring at high 
energy collisions, in which numerous tiny droplets are expelled radially from the periphery of  the 
interacting drops. Since the dynamics of  such collisions are very complicated, the available 
expressions for predicting their outcomes are as yet mostly empirical. The results reported recently 
by Podvisotsky & Shraiber (1984) have been chosen in this work due to their applicability to a 
flowing gas~lroplet suspension and their capabiity to predict post-collision velocities for fragments. 
According to these results, a target droplet i colliding with a projectile j (smaller than the target 
droplet) undergoes a mean change in mass, given as 

Arn,/mj = 1 - 0.246 Re°/4°7 Lp{°°96(6,/6j) 0.:78 _ ~b,j 

(for 30<Rej~<6000;  5 < L p i < 3 . 1 0 s ;  1.9<~6i/~j~<i2), [1] 

where m is a droplet mass; Rej~ is the Reynolds number for a small droplet penetrating into a larger 
droplet, 

Rej, = 6jlvj - v, lp, l~p. [2] 

where 6 is a droplet diameter, v is a droplet velocity, pp is its density and #p is the liquid particle 
viscosity; Lp, is the Laplace number, indicating a ratio between surface tension forces and viscous 
drag, 

Lp, = (~iPpCTp/i.l 2, [3] 

where % is the surface tension between the droplet and the gas; ~b,j is a correction term accounting 
for the gas flow, given as 

)'0.00446. A for A ~< 40.6 
~b~J=[ll .85"(0.01A) 464 for40.6~<A ~<120, [4] 

A = Re°,, 2~s Lp°-2(6,/~i,)°4We°"~2; [51 

and Wei is the Weber number, indicating a ratio between the inertia force and the surface tension 
force, 

We = pglU - v126/a, [6] 

where U is the local gas velocity. When m~/mj = I, the droplets coalesce. When 0 < Am~/mj < 1, 
some of the projectile droplet is fragmented. For -m,/mj<Am~/mj<O (the condition 
-m~/mj < Am~/mj is imposed by conservation of  mass), the projectile droplet is fully fragmented 
while the target droplet is fragmented partially or fully. From [1] it is evident that the probability 
for coalescence increases when the ratio between diameters of  target and projectile droplets 
approaches one (for zero relative velocity between the target droplet and the gas). This dependence 
fits the findings of McTaggart-Cowan & List (1973), who reported that excessively small projectile 
droplets failed to coalesce. The likelihood of droplet fragmentation increases for higher values of 
relative velocities of colliding droplets and gas-droplet slip velocity. Fragmentation is also 
facilitated when the surface tension and gas drag are small relative to inertial forces. The above 
features of  [1] fit expressions developed for estimating limits between coalescence and fragmentation 
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modes in collisions [as in the widely cited work of Brazier-Smith et al. (1972)], although it has been 
found experimentally by Podvisotsky & Shraiber (1984) that such expressions are often unreliable. 
Notably, according to [1], the gas flow may considerably enhance droplet fragmentation by 
collisions; this effect was not accounted for in expressions used in earlier works. Since no 
information is available about the distribution of the mass change Am~/mj, the mean value given 
by [I] is used in this work as a single value. 

The distribution of diameters for the fragments formed in a collision (excluding the larger 
droplet, the diameter of which is determined by [1]) has been correlated by Podvisotsky & Shraiber 
(1984) as a log-normal distribution of the reduced variable ~ = 6k/6, (~k = fragment diameter). 

P[rk] = [(2n)' :5,ad] ~ exp [ - ( ln  6k - In %)2a~], [7] 

where parameters Ea and ad are given by 

In cd = - 1.13 We °°~ Re°; 65 Lp/-°57 (6~/6j) o zs [8] 

and 

aa = 0.61Wef °~5 Re°; '' Lp, 0o,4 (6,/fi,)° ,~. [9] 

In the above distribution the predicted mean fragment diameter decreases and the scatter in sizes 
increases as the effect of  inertia forces exceeds that of surface tension and gas drag. The above size 
distribution is in qualitative agreement with the data presented by Bradley & Stow (1979). 

The following correlation has been developed by Podvisotsky & Shraiber (1984) for the velocity 
of fragments scattered following the collision: 

(vt - vi)" (vj - vi)/Ivj - v,12 = 0.08 + 0.016We, = ~ for We, ~< 12.5, [10] 

where vk is the velocity of fragment k. This expression indicates that the fragment velocity (in a 
frame moving with the target droplet initial velocity) may be smaller by an order of magnitude 
than that of the projectile droplet, and that this velocity increases with the Weber number. The 
latter may be expected, for when the ratio between inertia forces and surface tension is high, the 
fragments retain considerable amount of  initial kinetic energy following the collision. In addition 
to the above empirical correlation, conservation of momentum must hold: 

m i v  i + m j v . i  = ( m  i + Ami)v~ + ~ mkvk, [1 1] 
k = l  

where v~ is the post-collision velocity of the target droplet i and v is the number of fragments 
formed. When the droplets do not coalesce, [10] and [1 !] do not suffice for calculating the fragments 
velocities. Hence, in this work it is assumed that the fragment direction of motion is isotropic in 
a frame moving with the colliding droplets center-of-mass velocity (Vcm). Given a unit vector x 
in this direction, [10] yields: 

~ .  : [ l ' k '  X -1- V . . . .  - -  Vi] " [V j - -  vi]/lv j - v i i  2 ~-  {[[?,~ " x  " ( v j  - -  v , ) ]  + (Vcm - -  V t ) ( V  ] - -  V i ) / [ V  j - -  Vii 2, [ 1 2 ]  

where z'~ is the fragment speed, in a frame moving with the colliding droplets center-of-mass 
velocity. The fragment velocity in the laboratory frame is thereby determined as 

v~ = x[fl~lvj - vii 2 - (v .... - vi)(v j - v,)]/[x .(vj - vi) ] + v .... • [13] 

Once the fragment velocities have been calculated, the target droplet post-collision velocity may 
be determined from the conservation of  momentum ([!1]). This calculation method must be 
constrained by the conservation of  energy, so that the sum of kinetic and surface tension energies 
following the collision does not exceed the value of  that sum prior to the collision: 

v 

mit '~/2+mjv)/2+apn(~+6))>~(mi+Am~)t '~2+apn(¢5)) 2+ Z (m,v~+apn¢5~), [14] 
k = l  

where 6~ is the target droplet post-collision diameter, calculated from its new mass rn~ + Am,. If 
the latter condition does not hold, new post-collision fragment directions must be sampled and if 
repeated samplings do not suffice, fragment sizes are resampled. It is assumed that droplet 
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atomization by the gas shear during free motion can be neglected. However, a change of droplet 
size due to vaporization is taken into account. 

Applying this collision dynamics model and the assumptions listed above, the Boltzmann 
equation for the droplet distribution function f(r, v, 6, t) may be derived following the approach 
used in molecular gas dynamics (e.g. Lifshitz & Pitaevskii 1981, pp. 7-11). This procedure is similar 
to the derivation of kinetic equations for solid particle distributions in gaseous suspensions (e.g. 
Kitron et al. 1990). Since the obtained non-linear integro-differential kinetic equation is as yet 
beyond analytical solution, numerical methods must be employed. Although Monte Carlo methods 
have been extensively used to solve various rarefied gas dynamics problems, only a few attempts 
have been made to apply these methods to suspension flows. Recently, a Monte Carlo simulation 
method for calculation of the solid particle distributions in impinging streams reactors has been 
developed by Kitron et al. (1990). In this work a Monte Carlo simulation procedure is derived for 
solving the kinetic equation for the droplet distribution function, taking into consideration 
gas~lroplet interaction effects, inhomogeneity of the flow field and binary droplet collisions, 
resulting in either coagulation or fragmentation of colliding droplets. 

3. EMPLOYMENT OF THE MONTE CARLO DIRECT SIMULATION METHOD 

In this work, the direct simulation Monte Carlo (DSMC) method, first suggested by Bird (1976) 
for solving the Boltzmann equation in molecular gas dynamics, is used for modelling droplet 
interactions in dense fuel sprays. The key ideas of the DSMC method are: (a) the uncoupling of 
molecular motions and collisions during a time step Atm, i.e. the use of the operator-splitting 
technique; (b) the simulation of molecular collisions by disregarding molecular position coordinates 
within spatial cells; and (c) the simulation of fewer particles than those in the real flow, while 
normalizing the collision cross-section so that the collisions rate is not changed. Assumption (a) 
is valid when Atm is smaller than the time between collisions and larger than the collision duration, 
and assumption (b) is valid provided that the cell is so small that the spatial variation of flow 
variables in the cell is negligible. Assumption (c) may not be necessary for solid suspension flow, 
due to relatively small particle number densities; in this work, however, the large number of 
fragments formed requires that this procedure be implemented. 

Under the assumptions listed above the DSMC method for the solution of the Boltzmann kinetic 
equation describing the flow of a gas-droplets suspension can be formulated as follows. The flow 
system is divided into equal-volume cells. Simulated droplets are distributed in the system, with 
their positions, sizes and velocities sampled from the initial distribution function. When a stationary 
kinetic equation is solved, the initial distribution function is chosen arbitrarily, and the stationary 
solution is obtained by relaxation techniques for long process times. The droplet population is 
normalized such that each kf droplets of identical size in the real system is substituted by one droplet 
in the simulation, having the same diameter as these droplets. The collision cross-section for each 
such simulated droplet is accordingly increased by the factor kf so as to preserve the true collision 
rate. Provided that the droplet distribution function at time ( n -  l)Atm is determined, the 
distribution function at time nAtm is calculated as follows. Droplets are allowed to move in the 
system, without colliding with each other, for a time interval At,,, with each droplet's subsequent 
position, velocity, temperature and diameter determined from the droplet equation of motion and 
heat transfer to the gas. Within the time interval Atm, a droplet may encounter a boundary: either 
an open boundary, through which it leaves the system; or a wall, onto which it sticks. 

Following the collisionless flow, droplets are allowed to collide with each other. The droplet 
population is discretized by location and size such that the number of droplets of type k in cell 
m, having a volume Vm, Nm.k, is given as 

Nm.,(t) = dr dv drf(r ,  v, 6, t), [15] 
arm ao dr~ 

where 6~ and 6~ are the lower and upper diameter limits, respectively, for droplets of type k. The 
total number of droplets in cell m is 

Nm = k Nm.*" [16] 
k = l  
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A pair of colliding droplets of types i and j is sampled from the possible pairs of these types 
with probability ' * ,* aocij/(a~jt~j), where v~j is the absolute value of relative velocity between the 
droplets, a,j = n(6t + ~ij)2/4 is the total collision cross-section and v* and a* are the maxima of the 
absolute values of the relative velocity and collision cross-section, respectively, between droplets 
of type i a n d j  in the cell. To determine the collision outcome, the collision dynamics model defined 
by [1]-[4] is employed. Some of these expressions were correlated from data obtained for a range 
of conditions specified above. However, for a complex flow it is difficult to preclude obtaining 
parameter values beyond those specified (e.g. for heavy droplets formed by coagulation); hence, 
[1] will be extrapolated in predicting collision outcomes, except for cases in which Rej~< 30, 
6,/6j> 12 or Lp~ > 3 x 105, for which the coagulation probability is higher and thus complete 
coagulation will be assumed. For the colliding pair, the target droplet (i) is the larger droplet, and 
its mass change Am~/mj is calculated from [I]. If Arn~/rnj = 1, coagulation occurs, in which case the 
mass of the projectile droplet is added to that of the target droplet and the target droplet is removed 
from the array of simulated droplets. The velocity of the resulting droplet is calculated from the 
equation of momentum conservation ([1 I], with v = 0). 

If -rn,/mj < Am,/mj < 1, fragments are formed by the collision, the sizes of which are sampled 
from the log-normal distribution [7], from a total mass of Am, + mj (with the projectile droplet 
removed from the droplet array). Am, + mj serves a maximal value in the sampling of the first 
fragment mass, and for each additional fragment the maximal value is the residual mass. In order 
to avoid excessive loading of the calculation with minute fragments, which are likely to be swiftly 
removed from the reactor, fragments smaller than a certain minimal size will be removed from the 
reactor upon their formation (or after having diminished, due to evaporation, to such a size). Also, 
a limitation on the number of fragments formed is imposed by the conservation of energy condition 
[14]; when this condition is violated, repeated sampling of fragment sizes is performed. Once the 
sizes of the fragments formed have been determined, for each fragment the direction vector x is 
sampled from a uniform distribution on a unit sphere, and from it the fragment velocities are 
determined from [13]. Following the calculation of the fragment velocities, the target droplet 
post-collision velocity is calculated from the momentum conservation equation [11]. Finally, the 
energy conservation condition [14] is checked; if violated, new direction vectors are sampled for 
the fragments and new velocities are calculated. In a case when Am,/mj = m~/mj, the entire target 
droplet mass is fragmented. Then fragment sizes are sampled as described above, while in the 
calculation of velocities one of the fragments is substituted for the target droplet in the energy 
conservation equation. 

After each collision, a time increment 

At,j = 26,j Vm/[Nm., Nm.jkrv~ j a,j], [ 17] 

where 6,j = I if i = j  and 6, = 0.5 otherwise, is added to a time counter T~ for the collisions between 
droplets of types i and j (T,~ is used for both i , j  and j, i collisions), in cell m. The combination 
of droplet types having the smallest value of the local time counter T,~ is chosen for the next 
collision (see Bird 1976, pp. 168-171); if all T~ values are zero, the combination is randomly 
sampled. This procedure is repeated until all T~ values exceed the value nAtm. When the collision 
density is low, the above procedure overestimates the collision rate. In order to avoid this, the last 
collision for each combination ( i , j )  in every cell is accepted as a true collision only with probability 
Pray, = I -(Tijm- nAtm)/(Atu.]~st), where T~ is the value of the time counter after the last collision 
increment, At,j.~ .... has been added to it. Accordingly, with probability 1 - p ~  the last collision is 
not taken into account, i.e. the parameters of the droplets involved in the last collisions remain 
unchanged. The expected number of collisions in cell m during a time interval At~ between droplets 
of types i and j is given as 

M ~ = Nm.,N~j klv~j At~ a,j/(26,j V m), [18] 

where t,,j is the mean of the absolute value of relative velocity between droplets of classes i and 
j. The performance of the procedure depends upon the choice of cell dimensions and the value of 
the time increment Ate. The detailed description of the procedure for determination of these 
parameters is presented in Kitron et al. (1990). The same procedure was adopted in the present 
study. 
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4. D R O P L E T  E Q U A T I O N  OF FREE MOTION AND L I M I T A T I O N S  
ON SUSPENSIO N  P R O P E R T I E S  

In the study by Kitron et al. (1990), it was shown that the particle volume fraction in a gas-solids 
suspension must be < 0.055 if the binary collisions assumption is to be valid, and that, on the other 
hand, the minimal volume fraction is such that particle number densities are high enough to allow 
statistical treatment; the situation in droplet suspensions is similar. Using the approach applied in 
the latter study, it can be shown that in the systems treated in this work the deviations in 
approaching droplet trajectories due to gas flow may be neglected; this has also been confirmed 
experimentally in the case of  droplet collisions in rain clouds reported by McTaggart-Cowan & 
List (1973). 

In the above stochastic model, it has been assumed that collision durations are negligible, so that 
droplet motion can be described as free motion disrupted instantaneously by collisions. This 
assumption may be valid for solid particles, but is more problematic for droplets and its validity 
is difficult to assess due to lack of  relevant data. Nevertheless, for high collision velocities 
characteristic for impinging streams reactors, shorter collision durations may be expected. 

Another assumption made was that droplets are spherical and that aerodynamic breakup due 
to gas shear during free droplet motion is negligible. Borisov et al. (1981) investigated experimen- 
tally the breakup of  single droplets moving in a gas flow. Their results show, as in previous works, 
that droplet breakup does not occur when We < 6, and in some conditions at even higher Weber 
numbers. For characteristic flow parameters in an impinging streams absorber (6 =40/~m,  
crr = 0.072 kg/s 2, IU - vl = 40 m/s, pp = 1.77 kg/m3), a value of  We = 1.6 is obtained. 

A certain restriction may arise concerning the relation between the hydrodynamical relaxation 
time, given by Stokes law as 

r h = pp~2/(18/ag) [19] 

and the mean time between collisions. The assumption that colliding particles have uncorrelated 
velocities is valid in gas dynamics due to the high rate of collisions between molecules (in addition 
to the high molecule number densities). Since suspension flow involves a much smaller droplet 
collision rate than molecule collision rates in gas flow, the hydrodynamical damping of  post-col- 
lision velocities should be strong enough to prevent such a correlation. If hydrodynamical 
relaxation occurs too quickly, droplets have small slip velocities relative to the gas, so that their 
velocities are highly correlated with respect to the gas velocity at the location of the collision. The 
latter conclusion is equivalent to the requirement that the droplet self-collision Knudsen number, 
estimated from kinetic theory as Kn = ¢/D = 6/(2'/26flD), where D is a characteristic macroscopic 
length, ¢ is the free path and fl is the droplet mean volume fraction, must not considerably exceed 
the Knudsen number for collisions of  droplets with gas molecules, S = rh U/D, where U is a 
characteristic flow velocity. For the characteristic conditions during pentane combustion con- 
sidered in this work (6 = 35 pm,/~g = 3.05 x 10 -5 kg m/s, U0 = 11.6 m/s, pp = 630 kg/m 3, fl = 0.007, 
D = 0.3 m), one obtains Kn = 0.002 and S = 0.054, indicating that the effects of both gas drag and 
droplet collisions are significant. The restrictions on cell dimensions and the values of  the time 
interval Atm have been discussed comprehensively by Kitron et al. (1990) and the same treatment 
applies here. 

When only fluid drag acts upon droplets during Atm, a droplet trajectory is calculated by 
integrating the ordinary differential equation 

d2r/dt 2 = 0.75 CoLoFJ(pp6)]lU - vl(U - v) + g, [20] 

where U is the gas velocity at r, g is the gravity acceleration and Co is the gas drag coefficient for 
a liquid droplet flowing in a gas, given by Hetsroni (1982, Chap. l, p. 210) as 

,(8(30 + 2)/[Rep(O + I)] for Rep < 2 

CD = ~[{ 14.9/R%°7~ +@[(24/Rep)+(4/Rep~)]}/ (O+l) t  5 for 2 < R% < 500, 
[21] 

where 

R% = pg 6 IU - vl~8 [22] 
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and 

(9 =/%//a 8. [23] 

The lift forces acting on the particles due to gas shear (Magnus force, Saffman force etc.) 
are neglected, since, for droplets in impinging jets, the drag in the direction of  the lift force 
is usually much stronger than the lift force [see also Soo (1969) and Lee & Wiesler (1987)]. 
The effect of the droplet flow on the flow pattern of the carrying gas is also neglected. This 
dynamical uncoupling is justified for laminar flows if the particle volume fraction in the system 
is sufficiently small so that the gas flow is not affected significantly. The ratio of the stress exerted 
on the gas by droplets to the total pressure gradient in the impinging jets reactor was estimated 
to be < 0.01. Thus, the momentum decoupling assumptions also holds for the impinging jets flow 
pattern. 

5. GAS FLOW PATTERN IN AN I M P I N G I N G  JETS REACTOR 

Elperin (1972) has demonstrated that the gas flow pattern in the inter-nozzles region of impinging 
streams reactors fits the expressions obtained from a potential flow analysis of a gas jet colliding 
with a wall: 

and 

U: = zUo/H [24] 

U, = rUo/(2H), [25] 

where H is the distance from the jet entrance point to the wall (see figure 1), U. and U, are the 
axial and radial gas velocity components, respectively, and U0 is the initial jet uniform axial 
velocity. Thus velocity distribution is not valid at the exit from the feed pipes; as an approximation, 
a discontinuous gas velocity profile was applied, with [24] and [25] used in the inter-nozzle region 
(for Izl < H a n d  r < Dz/2--see figure 1), and U: = - zUo/ I z l  and U, = 0 for all Izl > H a n d  r < D,/2, 

where D2 is the inlet nozzle diameter. 
In order to analyse the effect of turbulence in the impinging streams reactor, a coarse 

modification of [24] and [25] above is considered: 

U. = - z U o / H  + u: [26] 

and 

U, = rUo/(2H) + u;, [271 

where u" and u; are the axial and radial turbulent velocity components, respectively, u; and u; are 
assumed to be random Gaussian fields with zero means and with standard deviations chosen as 
characteristic values from experimental data on turbulent jets impinging upon walls performed by 
Donaldson et al. (1971): (ti~z) 1'2= 0.01 U0 and (ff~2)1,2 = 0.15 U0. 

Turbulent velocity pulsations are assumed constant during the average lifetime of  a 
turbulent eddy, estimated as the Lagrangian time scale of the turbulent gas flow (e.g. Kitron 
et al. 1990): 

r¢. = A~/[(ff;)  z + (zi~)2] ': ,  [28] 

( 
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Figure I. Scheme of an impinging streams reactor for gas-liquid droplet operations. 
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where ~;. is the average time required for fresh fluid to surround a large particle, or an average time 
for a very small particle to travel the minimal characteristic length of the turbulent velocity field, 
and the Lagrangian spatial integral scale Ag may be estimated according to Melville & Bray (1979): 

Ag = 0.195 Wl,2, [29] 

where w~ 2 is the jet half-width. The above approach requires that the particles be unaffected by 
the motion of the smallest eddies. This requirement is violated when the hydrodynamical relaxation 
time rh is of the same order of magnitude as the characteristic time for the motion of the smallest 
eddies, ~ = [ l~/ (psc , )]  ~'2, where E~ is the specific energy dissipation rate. Then, using [19] for ~h, the 
restriction on the droplet diameter is 

6 ,,, LK/(  18pp/Ps)~2, [30] 

where LK is the Kolmogorov microscale length, 

LK = [g~/(p~c,)] I'4. [31] 

Therefore, for large values o f p p / p  s ~ 1000, as studied in this work, only droplets smaller by 2 orders 
of magnitude than the Kolmogorov microscale length may respond to the smallest eddies. For air 
flow with a characteristic value of ~t = 300 W/kg: LK ~ 0.06 mm, so that the above restriction is 
violated only for submicronic droplets. For comparison, let us calculate the Lagrangian scale for 
characteristic flow values of ( 6 ' 2 )  1:2 = 2 m/s and c, = 300 W/kg, obtaining A s = T 2 ( ~ ' 2 )  1/2 = 3 mm, 
which is larger by I-2 orders of magnitude than the diameters of droplets studied in this work. 
As mentioned above, the modulation of the gas turbulence pattern caused by droplets is neglected. 
The latter approximation was validated in Kitron et al. (1990) by numerical sensitivity studies, in 
which numerical simulation results were only weakly affected by changing the Lagrangian time 
scale by a factor of ~ 2. 

In the simulation, droplet motion inside an impinging streams reactor will only be calculated 
in the range 0 < c < H, so that the reactor symmetry with respect to the impingement plane may 
be exploited. The impingement plane will be treated as a specularly reflecting surface and droplets 
will be assumed to leave the reactor upon crossing a certain maximal radius measured from the 
reactor axis. Following each time interval Atm, a droplet mass of FL Atm, where FL is the liquid 
mass feed rate, is fed to the reactor inlet. The diameters of droplets within this mass are sampled 
from a log-normal distribution with parameters determined from experimental data; the log-normal 
distribution is applied since it closely describes the features of the size spectrum obtained from spray 
nozzles. The droplet inlet velocity is assumed to be uniform and equal to the gas inlet velocity, 
U0, estimated as 4FG/(p8 nD~), where FG is the gas inlet mass flow rate. The initial droplet volume 
fraction, flo, used to calculate At m, is determined as fl0 = FLRs/[ppFG]. Droplets are fed at radial 
positions sampled from the uniform distribution over the inlet nozzle cross-section. In order to 
simulate a continuous droplet feed, an initial axial position of each droplet is calculated by 
integration of the equation of motion [20] during a random fraction of Atm, with initial conditions 
t ' = U  0and z = H .  

6. C A L C U L A T I O N  OF GAS ABSORPTION IN I M P I N G I N G  
STREAMS ABSORBERS 

Herskowits et al. (1988) have investigated the performance of an impinging streams reactor for 
gas absorption in a liquid phase. The reactor consisted of two oppositely positioned spray nozzles, 
which released two impinging water spray jets into a chamber containing CO2. The quantity of 
CO2 absorbed in the water was measured for different operating conditions. To evaluate the 
performance of this reactor, assume that the system is isothermal and that the dominant resistance 
to mass transfer is inside the thin spherical shell within a liquid droplet, within radii rl < r < r~. 
Neglecting the gas phase resistance may be justified for the absorption or desorption of a pure gas 
with low solubility by a weakly volatile liquid. In the latter case, the diffusivity coefficient for the 
gas in the gaseous phase is much greater than in the liquid phase, and its concentration in a gaseous 
phase in equilibrium with the liquid phase is close to its concentration in the bulk gaseous phase. 
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Therefore, the gas concentration gradient in the gaseous phase is small, so that the gas phase 
resistance may be neglected. On the other hand, a characteristic time for mass transfer inside the 
droplet is 

rD = 62 /DgL ,  [32] 

where D~L is the diffusivity of the gas in the liquid, which for CO2 in water is 1.9 x l0 -9 m2/s (see 
Perry & Chilton 1973, Chap. 3, p. 224). For a 40 #m dia droplet, zo = 0.85 s compared with about 
10-6S for the hydrodynamical relaxation time and with a residence time in the reactor of at least 
0.01 s (estimated as L / U o ) .  Thus, it is evident that the rate of mass transfer process within the 
droplet determines the total mass transfer rate. The validity of  neglecting the gas phase resistance 
on the mass transfer in this system was also confirmed by experimental results reported in Tamir 
& Kitron (1987), whereby the gas flow rate in an impinging streams absorber with separate gas 
and liquid inlets had an insignificant effect on the absorption rate. 

Then, under the above assumptions and following Brid e t  a l . ' s  (1960, p. 528) analysis, the rate 
of mass transfer of a component A from the gas to the liquid droplet is determined as follows: 

T~ = {4ncD,~./[(I/r, ) - (1/r 2)]} In[ ( !  - XA2) / ( I  -- XA, )], [33] 

where c is the overall molar concentration in the liquid droplet, DAL is the diffusivity of component 
A in the liquid phase, and XAt and XA2 are the molar fractions of  component A at radii rt and r_,, 
respectively. Assuming that r2 = 6 and r~ - r 2 = r/, where r/ ,~ fi, and assuming that the droplet is 
in a quasi-steady state so that the changes in r/, XA~ are negligible, [33] reduces to: 

T~  = ( 4 n c 3 " D ~ , [ . / ~ l ) .  ln[(l - xA2)/(I - xAi )] = k t . ( 4 r c 3 2 D A t , ) l n [ ( l  - XA2) / ( I  --  Xal )], [34] 

where kL is the mass transfer coefficient which may be treated as constant and 4n62= A is the 
contact area between the phases. Then, an evaluation of the transfer rate may be obtained by 
calculating the time-averaged interphase area in a steady-state flow: 

,,T = dt '  (t2 tl ). [35] 
I 

7. EVALUATION OF FUEL V A P O R I Z A T I O N  AND SPRAY CO MBU S TIO N  

The combustion of liquid fuel spray in a combustion chamber is commonly encountered in 
furnaces, gas turbines, diesel engines etc. In such processes, a dominant rate controlling factor is 
the rate of fuel vaporization from the spray droplets, since the combustion occurs in the gaseous 
phase. Extensive efforts have been devoted to the modelling of fuel vaporization in spray 
combustion (e.g. Faeth 1983; Sirignano 1983). The results obtained by Tambour (1985a) indicated 
that coalescence significantly affected the droplet size distribution in the spray center, whereas close 
to the spray edges the effect of vaporization was more dominant. 

In order to evaluate the effect of droplet collisions on liquid fuel combustion in an impinging 
streams reactor, the results of Faeth's (1983) analysis of single drop behaviour in fuel sprays were 
employed. The Faeth expression for droplet vaporization rate is valid for a moving droplet when 
the gas phase Damkohler number, 

Da = ~/(r, iv - UI), [36] 

where rr is a characteristic reaction time, is small and when the reaction is confined to the bulk 
gaseous phase. A local homogeneous flow analysis performed by Faeth (1983) has yielded small 
values of the Damkohler number, indicating that the assumption is reasonable. Moreover, 
experimental data discussed by Faeth (1983) revealed appreciable quantities of unburned gaseous 
fuel within the core of well-attached spray diffusion flames, indicating that most drops simply 
evaporated with no envelope flames present. 

Following Faeth's (1983) analysis, the vaporization rate from each droplet is given as 

rn = 2 n f p j D ~ . i n [ ( I  - YF)/(I -- YFsg)]" {1 + 0.278 Ret 2Sc~ 3/[1 + 1.232/(ReSc"3)]t 2}, [37] 
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where rh is the mass vaporization rate, D F is the diffusion coeflicient for the vaporized fuel in the 
gaseous phase, Yv is the fuel vapour fraction in the gaseous phase, Yvss is the fuel vapour fraction 
in the gas-liquid interface and Sc is the Schmidt number, Sc =lts /pgDv.  The  equation of 
conservation of energy for the drop yields: 

OzppCp3a/6)(dTv/dt) = n f 2 h ( T  - Tp) - rhAH, [38] 

where Cp and Tp are the liquid fuel heat capacity and temperature, AH is the enthalpy per mass 
required to transform the liquid fuel to fuel vapour in the bulk gas temperature and h is the heat 
transfer coefficient determined as follows: 

h = [thCp/(n32)]{i + 0.278 Ret"2ar~/3[l + 1.232/(Rear4~3)]t/:}/{exp[rhCp/(2~z3;ts)]- 1}, [39] 

where ;tg is the gas thermal conductivity and Pr is the Prandtl number, Pr = C~.g#s/2g. The mixing 
rule used for determining the viscosity of the gaseous mixture in the reactor is Wilke's semiempirical 
formula (e.g. Bird et al. 1960, p. 34) and a similar mixing rule is used for estimating the thermal 
conductivity (e.g. Bird et al. 1960, p. 258); other mixture properties are calculated by assuming an 
ideal mixture. 

8. VALIDATION OF THE N U M E R I C A L  METHOD 

In order to investigate the capability of the above described Monte Carlo simulation procedure 
to correctly predict droplet size and spatial distributions in spray with droplet interactions, the 
analysis of flow systems was performed for which results are known in the literature: droplet 
coagulation and fragmentation in homogeneous and inhomogeneous gas--droplet suspensions. 

8. I. Evolution o f  the droplet size distribution in homogeneous coagulation 

Staffman & Turner (1956) have investigated theoretically the formation of a droplet size 
distribution in a homogeneous rain cloud. The following expression for the collision rate between 
droplets of types i and j, having diameters 6, and 3j, respectively, flowing in a turbulent gas was 
derived: 

Rco, = i.3(3, + 3j)3n,n,(¢tpg/ktg)"2/[8(1 + 3,j)], [40] 

where q is the energy dissipation rate in the gas and n indicates number density. Assuming that 
the rain cloud is spatially homogeneous and that all droplet collisions result in coalescence, Saffman 
& Turner (1956) calculated the droplet size distributions for different times starting with a 
population with uniform droplet diameter 60. In their calculation, droplet number density was 
normalized by the initial number density no, and time was normalized as follows: 

/" = 1.3 3~no(¢tpg/#8)J"2t/8 -~o t .  [41] 

To analyse this problem using the DSMC method, droplet free motion does not need to be 
considered, since the collision rate is independent of their positions or velocities. Instead of [18] 
above, the expected number of i,j collisions in a system of volume V m during a time interval Atm 
is given by 

~P,; = 1.3(6 + 3j)3N, N j (qps /p , )  ''2 Atm/[8(l + 3o) ] = ao(3, + 3j)3N, NyAtm/[no Vm3g(1 + 3,j)] [42] 

SO that for an initial number of droplets No, the time increment added for an i,j collision is 

At~j = [N0303(1 + 3,j)]/[(ct0(6 , + 3j)3N~Nj]. [43] 

The expected rate of i,j collisions for a single droplet is 

v,., = ~,i/[Atmgi] = Cto(3 j + 6i)3gj/[go3~(l + 6ij)] [44] 

and since the value of Atm should be shorter than 1/N,, its value may be assigned as l/[Noao]. A 
numerical solution obtained for No = 30,000, is presented in figure 2, for t = 0.09 and compared 
with results reported by Saffman & Turner (1956). As a result of droplet coalescence without 
fragmentation, the droplet population consists of groups of droplets with masses that are integer 
multiples of the initial droplet mass. The results obtained by the DSMC method correctly describe 
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Figure 2. Droplet size distribution in a homogeneous, tur- 
bulent rain cloud, for coalescence only and uniform initial 
sizes distribution; for dimensionless time t = 0.09; 
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Figure 3. Droplet size distribution calculated in simulation 
(marked points) compared with the distributions calculated 
analytically from [47] by substituting (6 ~") values 
obtained in the simulation (marked lines); V = volume, 

Vo=n(O.5mm)3/6. O, m =0; +, m = 1/3; O, m =2/3. 

the solution for droplet populations having concentrations of  down to 2% of the initial droplets 
concentration. For smaller concentrations, corresponding to larger droplet sizes, the Monte Carlo 
solution underestimates the concentration values. Thus, the developed method copes well with 
predicting the evolution of the droplet size spectrum, but fails to predict the formation of 
particularly large droplets with small concentrations. Note that due to the homogeneity of  the 
system, collisions were sampled in a single cell with a very large population. Hence, for 
inhomogeneous flows, for which the population in a cell may be much smaller, statistical errors 
may be more significant. 

8.2. Evolution of the droplet size distribution in homogeneous coagulation and fragmentation with 
size-dependent collision cross-section 

A second check, intended to examine the simulation method capability to sample collisions while 
accounting for different collision cross-section and a different collision dynamics model, was 
performed for a spatially homogeneous system, with the collision rate given as: 

Rco,.,, = ~N, Nj(6~6))"/(I + 6v), [45] 

where a is a constant, so that the collision cross-section is proportional to (6i' 6fl 3". The conditional 
probability density distribution g(vi, t'j, v) of  secondary droplets volumes v was assumed to have 
a uniform distribution so that 

g(v' t ) 'v)={O/(v '+t ' j )  otherwise,if-v'<v<t) [46] 

where v, and t) are the volumes of colliding droplets. For this system, the droplet volumes 
probability density function at steady state was found analytically by Bajpai et al. (1988): 

~ e x p [ -  6 3/$3]/($~) if m = 0 [47] 
f(63) = [~ exp[--63/o9]/6 3" otherwise 

with 

and 

= r ( l  - m ) ]  [48] 

m = [~3,. F ( i  - m)) '"" ,  [49] 
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where S' indicates the ith moment of the droplet diameter distribution function and F(  • ) is the 
gamma function. The above Monte Carlo method was applied to calculate the steady-state size 
distributions for the cases m = 0, m = 1/3 and m = 2/3. The evolution of  the initial population of  
10,000 droplets with a log-normal size distribution, P(6) = [(2n)I"26a*]-l exp[( - ( l n  6 - / a*) /2 (a  ,)2] 
with a * =  0.2 and /~*= 0.0, was considered. The droplet population was discretized in the 
calculation by dividing volumes by the volume of  a droplet with 6 = 0.5. In figure 3, the obtained 
size distributions are compared with those predicted analytically by substituting the values of the 
moments 53" obtained in the numerical calculation in [47] above. Clearly, a good agreement is 
obtained, demonstrating the capability of the numerical method to provide correct solutions in the 
case of size-dependent collision cross-sections. 

8.3. Evolution of  the droplet size distribution in inhomogeneous coagulation and fragmentation with 
size-dependent collision cross-section 

A third system analysed was that described by Gillespie & List (1979) for a rain cloud, in which 
size distributions change as a function of  the height above ground. They assumed that the problem 
may be described as one-dimensional (in a direction perpendicular to the ground). Also, stationary 
flow was considered, with a source supplying rain drops at the cloud top having a Marshall-Palmer 
(1976) size distribution: 

P ...... (6) = A0 e x p ( -  A06). [50] 

The effects of  side winds and condensation and vaporization during droplet fall were neglected. 
It was also assumed that droplet velocities equalled their free-fall values, estimated by Best's (1950) 
formula. The same assumptions were made in this study, while applying a collision dynamics model 
proposed by Brazier-Smith et al. (1972), which accounts for both fragmentation and coagulation. 
According to this model, the probability of  droplet coalescence is given as 

= ~(1 + 6j/ri) 2 if 6i > 0.5 mm [51] p(ri, 6i) t o  otherwise. 

If the droplets do not coagulate, the collision outcome is calculated from data reported by 
McTaggart-Cowan & List (1973), whereby the probability density function of target droplet 
post-collision mass is given as 

= t~ e x p [ - ( m '  - mi)2/(2s2)] otherwise,if m'  < rn i + m i [52] P I  (m;; m i ,  m,) 

where the coefficient r/ is correlated as 

'7 = 11.8/[~%(0.41 - 0.3,~j/,~,)] [53] 

and the variance s: is recursively determined from the normalization condition [52]. The mean 
number of  fragments formed in the collision is correlated as 

f = 3.6[(6~6j)(0.41 - 0.306j/6,)] I'2 [54} 

and the probability density function of  the fragment mass is given by 

J'(6.0f/6,) (mr/0.0654)'/~ if mr < 1 [55] 
pf(mf; m,, mj) = ~(6.0 f/6~)m~.6 /[O.O654)~q~ ] otherwise, 

where • is a normalization factor obtained by normalizing the above distribution function in the 
range (mini . ,  m, + mj - m;); mmi n is a minimal fragment mass which was assigned by Gillespie & List 
(I 979) as 0.0654 mg; ct = - 1.0 - 0.392/6j. 

The Monte Carlo simulation was applied for a cloud with a cross-section value of 2000 mm 2. 
For the conditions considered by Gillespie & List (1979), with a rain deposition rate of  25 mm/h, 
a cloud of  height 2 km and a Marshall-Palmer parameter value A0 = 2.09 mm-1 (corresponding 
to an initial droplet number density of  4 x 10 -6  droplets/mm3), the total number of  droplets 
obtained in the simulation system at steady state was about 36,000. The resulting droplet size 
distribution, calculated following 500 time intervals of  10 s each and using a normalization factor 
value of kr = 3, is shown in figure 4 in comparison with that obtained by Gillespie & List (1979). 
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Clearly, the Monte Carlo solution predicts well concentrations of droplets with number fraction 
(with respect to the entire population) > 0.1%. The good agreement between the two different 
solutions demonstrates the capability of the devised Monte Carlo procedure to describe correctly 
the inhomogeneous dense gas-liquid suspensions with droplet interactions. Notably, coagulation 
played a major role in obtaining the resulting size distribution, while the role played by 
fragmentation was practically negligible. 

9. N U M E R I C A L  R E S U L T S  A N D  D I S C U S S I O N  

Simulation of spray flows in impinging streams reactors was performed by analysing the reactor 
shown schematically in figure 1, as described above. The reactor was partitioned in the axial 
direction (in the range 0 < z < H) into 10 equal-volume cells. 
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Figure 6. (a, b) Calculated dependence of the average transfer area A on 2H for laminar flow in an 
impinging streams absorber; (a) with collisions, (b) without collision. (c) Experimentally determined 

(Herskowits et  al. 1988) dependence of k,A on 2H. 
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9. i. Numerical analysis of  absorption in impinging jets 

The simulation for the absorption process employed parameters relevant to the experimental 
system used by Herskowits et al. (1988): the nozzle diameter was D 2 = 2 mm; the gas was CO2 
at atmospheric pressure, fed to each nozzle at a rate F G = 4 kg/h; the liquid was water, 
fed at FL = 40 kg/h. From these flow rates, the gas inlet velocity was estimated as U0--207 m/s 
and the droplet initial volume fraction as/30 = 0.018. Since it was shown in [20] that the reactor 
efficiency was very weakly dependent on its diameter, the simulation was performed for a minimal 
reactor diameter, DI = 5 mm. From experimental data, the droplets fed by the nozzle were 
known to have a Sauter mean diameter, $3/~2 of 40/~m. By approximating the mean diameter 
6 as equal to the Sauter mean diameter, and assuming that the standard deviation in 6 
is 20% of the mean, i.e. a6=0.25,  the parameters of the log-normal distribution 
P(6)=[(2rt)l '2"&r*]-J'exp[(-(ln6-/a*))/2(a*) 2] could be determined from the formulae: 
(a*) 2 = ln[((rr/c~) 2 + 1] and/a*  = In 5 - (a*)2/2. 

The time increment in the simulation, At,,, had a value of  1.8 x 10 -6  S, and values of  the 
interphase area A were determined over consecutive periods of  50 Atm. When droplet collisions were 
taken into account, the calculated A values following 5-10 such intervals attained constant values 
within an accuracy of 5--10%, and steady concentration patterns were assumed. In the absence of 
such collisions, more droplets accumulated in the reactor and the steady-state condition was 
attained only following 50-100 such intervals. A typical calculation consumed 400 CPUs on a CDC 
Cyber 180/860 computer. 

The overall steady-state population of droplets in the reactors, when droplets were taken into 
account, was of  the order of 105. Hence, the use of a normalization factor kf was necessary. Values 
ofkf  were in the range 2-10. Changing this factor from 10 to 5 caused an increase in the interphase 
area by 5--10%; hence, kf values were chosen as the minimal possible within the calculation 
capability. In sampling droplet collisions in each cell, the droplet population was discretized by 
dividing droplet diameters by 30/3, where 30 indicates the Sauter mean diameter. Droplets with 
diameter < 30/4 were not followed in the calculation. 

In collisionless laminar flow in the reactor the droplets concentrated near the reactor plane of 
symmetry, in accord with the experiments reported by Elperin (1972). This is the result of the 
known effect of  particle accumulation in a region of flow stagnation. Since droplet diameters did 
not undergo any change in this case, the droplet log-normal size distribution was retained 
throughout the reactor. When collisions between droplets were taken into account, more droplets 
were found near the nozzle outlet than near the impingement region. It should be noted that the 
total concentration for the collisionless flow was larger by a factor of  20 than in the flow with 
collisions, but in the latter system many droplets were larger, since coagulation exerted a 
predominant influence. This is seen in figure 5, where droplet size distributions at different axial 
locations in the reactor are compared; the closer the location is to the impingement plane (z = 0), 
the larger is the fraction of large droplets, formed by coagulation. The fragmentation, on the other 
hand, was not frequent; calculating the same flow without taking it into account did not change 
the droplet size distribution significantly. 

In figures 6(a, b), the time-averaged overall interphase areas calculated, with and without droplet 
collisions, for laminar flow, are shown as a function of the nozzle separation distance, 2H, in the 
reactor. Collisions between droplets are shown to decrease the interphase area by 90% and more. 
This decrease is caused both by radial deflection of  colliding droplets and loss of kinetic energy, 
which causes droplets to exit from the reactor sooner [an effect discussed by Elperin (1972) for solid 
particle flows in impinging streams reactors], and by coalescence, which reduces the surface area 
of  droplets in the reactor. In collisionless flow, an increase in the nozzle separation distance results 
in an almost linear increase in interphase area, due to the linear increase in reactor volume and 
thereby in droplet holdup. In fact, the increase is steeper than linear, since an increase in H reduces 
the entrainment of droplets out of  the reactor by decreasing the gas radial velocity (see [25]). The 
effect of  collisions is shown in figure 6(a) to suppress this trend, with the interphase area attaining 
an asymptotic value for the large nozzle separation distance. This suppression is the result of  the 
collision-induced screening effect of  the droplets near the nozzle inlet, which prevents the buildup 
of droplet concentrations near the impingement zone. 
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In figure 6(c), the experimentally obtained dependence of kLA on the value of 2H, for CO 2 
absorption in flow conditions similar to those used in the study of Herskowits et al. (1988), is 
presented. The absorption rate is shown to initially increase with increased nozzle separation distance 
2H and to remain eventually constant within + 10%. Thus, the experimental results conform with 
the above prediction that droplet collisions curb the increase in the absorption rate with increased 
nozzle separation distance. However, within the range of relatively constant absorption rate with 
respect to H variation, the experimentally determined dependence displays one or two maxima in 
the absorption rate. These maxima in the absorption rate could not be discerned in the numerical 
simulation, as the magnitude of  the relevant variations fells within the calculation error of at least 
10-20% [referring to the spread in ,4 values calculated for consecutive time periods, at steady state, 
and to the spread indicated in figure 6(a)]. Such maxima may be the result of additional factors 
relevant for relatively smaller values of H, when the screening effects are still weak. For instance, 
decreased droplet number densities, caused by increased reactor volumes, may reduce collision rates 
considerably and thereby increase the overall concentrations and surface area of droplets. 

To examine the effect of turbulence on the absorber performance, the turbulent velocity pattern 
described above was employed in the calculation, the result being a decrease in the interphase area 
by about 50%, due to decreased droplet concentrations and enhanced coalescence. This is due to 
the effect of increased velocity differences between droplets, as indicated by [18], which increase 
collision rates. Still, since the exact gas turbulence pattern in the reactor is not known, the calculation 
performed above for laminar flow may be employed as an approximation of the real flow field. 

9.2. Numerical analysis of combustion in impinging jets 

The analysis of the effects of droplet collisions on pentane combustion in an impinging streams 
reactor was performed for a reactor with a 1.6 mm dia nozzle and a fuel feed rate (at each nozzle) of 
FL = 0.35 g/s, for which an SMD of 35/am has been reported by Faeth (1983). The gas was at a 
uniform temperature of 600 K and atmospheric pressure, and assumed to consist of 40% nitrogen on 
a molar basis, the rest being pentane vapour. Air was fed to each nozzle at a rate of F~ = 0.008 g/s. 
From these flow rates, the gas inlet velocity was estimated as U0 = 11.6 m/s and the initial droplet 
volume fraction as /~0 = 0.0076. The calculation was performed for a minimal reactor diameter, 
D~ = 5 mm. The initial droplet size distribution was identical to that used above for the absorption 
reactor, with the relevant SMD substituted as 5. The time increment in the simulation, Atm, had a 
value of 6.6 x 10-5 s, and values of the time-averaged vaporization rate in the reactor were deter- 
mined over consecutive periods of 50 A t  m. When droplet collisions were taken into account, the 
calculated values of the vaporization rate following 2-10 such intervals attained a constant value 
with an accuracy of  5-10%, and steady concentration patterns were obtained. In the absence of 
collisions, more droplets accumulated in the reactor and the steady-state condition was attained 
following 50-100 such periods. The overall steady-state numbers of droplets in the reactors, when 
droplet collisions were taken into account, were of the order of 5 x 105, values of the factorization 
factor kr were in the range 10-40. A typical calculation consumed 8000 CPUs on a CDC Cyber 
180,/860 computer. The droplet population was discretized by dividing droplet diameters by 60/4, 
where 60 indicates the Sauter mean diameter. Droplets with diameter < 6o/5 were not followed in 
the calculation. 

In collisionless laminar flow, the effect of droplets accumulating near the reactor plane of 
symmetry due to the above mentioned effect of accumulation in a region of flow stagnation, was 
noticeable for low H values, but at higher 2H values this effect diminished due to the elimination 
of droplets by vaporization. The droplet size distribution shifted to lower diameter values down- 
stream (see figure 7 for collisionless flow), due to vaporization. When collisions were taken into 
account with coalescence as the only collision outcome allowed, droplet number densities were 
higher near the nozzle than farther downstream, since coalescence and radial deflection by collisions 
prevented the buildup of high concentrations. Farther downstream, the size distribution widened 
and the maximum was shifted toward larger diameters (see figure 7). When fragmentation as a 
possible collision outcome was included, at high H values most droplets concentrated near the nozzle 
outlet, again due to vaporization and radial deflection and coalescence in collisions. Nevertheless, 
fragmentation by collisions caused many fragments to form downstream, so that for low H values, 
droplet number densities were largest near the reactor plane of symmetry, and for higher H values, 
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Figure 8. Calculated dependence of the average fuel vapor- 
ization rate on 2H for laminar flow in an impinging streams 
combustor. (a) Without collisions; (b) with collisions, only 
coalescence is accounted for; (c) with collisions, fragmenta- 

tion and coalescence are accounted for. 

droplet number densities were maximal at some intermediate location between the nozzle and the 
plane of symmetry. The obtained downstream size distribution (see figure 7) displayed a major 
decrease in the mean droplet size due to fragmentation. Coagulation was also significant, with a 
higher fraction of large droplets than in the case of  collisionless flow. 

In figure 8, the time-averaged overall vaporization rates calculated for (a) collisionless flow, (b) 
flow with only coalescence taken into account and (c) flow with both coalescence and fragmentation 
taken into account, are shown as a function of the nozzle separation distance, 2H, in the reactor. 
Similar to absorption results, in the absence of collisions the vaporization rate increases almost 
linearly, due to the linear increase in reactor volume. Also, similarly, the droplet collisions when 
only coalescence is taken into account, caused a drastic decrease in the vaporization rate and a 
suppression of  the increase in reactor performance when the nozzle separation distance was 
increased. When fragmentation by collision is also taken into account [figure 8(c)], the vaporization 
rate is still lower than that for collisionless flow, but higher than that obtained for coalescence only. 
The effect of fragmentation to increase the vaporization rate may be attributed to the increase in 
the interphase area for mass transfer. As H increases, the effect of  fragmentation on the 
vaporization rate (with respect to the case of  coalescence only) increases. The latter phenomenon 
may be due to several factors: (a) as H increases, droplet axial velocities increase in downstream 
flow (for a distance z '  from the nozzle, the axial velocity found from [24] is U0[l - z ' / H ] ) ,  so that 
the collision frequency increases and, additionally, the probability for fragmentation by collision 
increases (see [!]); and (b) the effect of reduced droplet entrainment when increasing H is likely 
to cause more collisions than in the case of coalescence only, since retained fragments are of a wide 
spectrum of sizes, velocities and directions of  motion. 

Calculations were also performed for the flow of  a low quality heavy fuel in air, corresponding 
to experiments performed by Elperin (1972) in an impinging streams combustor (D2 = 8.3 mm, 
H = 50-70 mm, S ~ 300 mm, U0 = 50 m/s, pp = 990 kg/m 3, pp = 0.0614 kg/m s, ap = 0.03 kg/s2). 
Results indicated that coalescence prevailed in the droplet interactions in this system, due to the 
high fuel viscosity. 
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10. CONCLUSIONS 

The Monte Carlo method was developed to calculate the spatial variation of droplet size 
distributions in impinging dense fuel spray jets with droplet interactions. The developed numerical 
method may be applied to identify phenomena related to droplet interactions in other complex 
spray flows involving coagulation and fragmentation of liquid droplets. 

For the impinging streams reactors, the suggested stochastic model and the DSMC procedure 
allow prediction of the spatial and size distributions of the liquid droplets and can be used to 
estimate optimal reactor volume, droplet residence time distributions etc. 

While the hydrodynamic breakup of droplets in spray combustion has recently received much 
attention [see the review of Faeth (1987)], only a few works have mentioned the possible significance 
of the collision-induced breakup. The results presented in this work indicate that, for fuels of low 
viscosity and surface tension, the collision-induced breakup may significantly affect the droplet size 
distribution and flow pattern. Although the collision dynamics model employed in this work may 
not be sufficiently accurate to allow quantitative predictions of the structure of flows involving 
collision-induced breakup, the proposed method allows evaluation of the significance and possible 
effects of such breakup. One possible application is the analysis of dense sprays of low viscosity 
fuels in Bosch-type injectors for conventional spark-ignition engines (see Heywood 1988, pp. 
294-299). 
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